Ultrasensitive Magnetic Nanoparticle Detector for Biosensor Applications

نویسندگان

  • Yu-Chi Liang
  • Long Chang
  • Wenlan Qiu
  • Arati G. Kolhatkar
  • Binh Vu
  • Katerina Kourentzi
  • T. Randall Lee
  • Youli Zu
  • Richard Willson
  • Dmitri Litvinov
چکیده

Ta/Ru/Co/Ru/Co/Cu/Co/Ni80Fe20/Ta spin-valve giant magnetoresistive (GMR) multilayers were deposited using UHV magnetron sputtering and optimized to achieve a 13% GMR ratio before patterning. The GMR multilayer was patterned into 12 sensor arrays using a combination of e-beam and optical lithographies. Arrays were constructed with 400 nm × 400 nm and 400 nm × 200 nm sensors for the detection of reporter nanoparticles. Nanoparticle detection was based on measuring the shift in high-to-low resistance switching field of the GMR sensors in the presence of magnetic particle(s). Due to shape anisotropy and the corresponding demag field, the resistance state switching fields were significantly larger and the switching field distribution significantly broader in the 400 nm × 200 nm sensors as compared to the 400 nm × 400 nm sensors. Thus, sensor arrays with 400 nm × 400 nm dimensions were used for the demonstration of particle detection. Detection of a single 225 nm Fe₃O₄ magnetic nanoparticle and a small number (~10) of 100 nm nanoparticles was demonstrated. With appropriate functionalization for biomolecular recognition, submicron GMR sensor arrays can serve as the basis of ultrasensitive chemical and biological sensors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pilot Application of Magnetic Nanoparticle-Based Biosensor for Necrotizing Enterocolitis.

BACKGROUND Necrotizing Enterocolitis (NEC) is a major source of neonatal morbidity and mortality. There is an ongoing need for a sensitive diagnostic instrument to discriminate NEC from neonatal sepsis. We hypothesized that magnetic nanopartile-based biosensor analysis of gut injury-associated biomarkers would provide such an instrument. STUDY DESIGN We designed a magnetic multiplexed biosens...

متن کامل

Gold Nanoparticle-Quantum Dot Fluorescent Nanohybrid: Application for Localized Surface Plasmon Resonance-induced Molecular Beacon Ultrasensitive DNA Detection

In biosensor design, localized surface plasmon resonance (LSPR)-induced signal from gold nanoparticle (AuNP)-conjugated reporter can produce highly sensitive nanohybrid systems. In order to retain the physicochemical properties of AuNPs upon conjugation, high colloidal stability in aqueous solution is needed. In this work, the colloidal stability with respect to the zeta potential (ZP) of four ...

متن کامل

Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor

Introduction: Growing demands for ultrasensitive biosensing have led to the development of numerous signal amplification strategies. In this report, a novel electrochemiluminescence (ECL) method was developed for the detection and determination of caspase-3 activity based on reduced graphene oxide sheets decorated by gold nanoparticles as signal amplification element and horseradish peroxidase ...

متن کامل

Performance Investigation of Pentacene Based Organic Double Gate Field Effect Transistor and its Application as an Ultrasensitive Biosensor

In this paper, the electrical performance of double gate organic field effecttransistor (DG-OFET) are thoroughly investigated and feasibility of the deviceas an efficient biosensor is comprehensively assessed. The introduced deviceprovides better gate control over the channel, yielding better charge injectionproperties from source to channel and providing higher on-state...

متن کامل

Ultrasensitive detection and molecular imaging with magnetic nanoparticles.

Recent advances in nanotechnology have produced a variety of nanoparticles ranging from semiconductor quantum dots (QDs), magnetic nanoparticles (MNPs), metallic nanoparticles, to polymeric nanoparticles. Their unique electronic, magnetic, and optical properties have enabled a broad spectrum of biomedical applications such as ultrasensitive detection, medical imaging, and specific therapeutics....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017